ห.ร.ม. และ ค.ร.น.
About Lesson

ตัวประกอบ หมายถึง จำนวนนับที่หารจำนวนนับที่เรากำหนดให้ได้ลงตัว เช่น a จะเป็นตัวประกอบของ b ก็ต่อเมื่อ b หารด้วย a ลงตัว หรือกล่าวอีกนัยหนึ่งก็คือ a หาร b ลงตัว

ตัวอย่าง

30 หารด้วย 6 ลงตัว แสดงว่า 6 เป็นตัวประกอบของ 30 ในขณะที่ 30 หารด้วย 4 ไม่ลงตัว แสดงว่า 4 ไม่เป็นตัวประกอบของ 30 เป็นต้น

หรือ

จำนวนที่หาร 18 ลงตัวประกอบด้วย 1 , 2 , 3 , 6 , 9 , 18 แสดงว่า 1 , 2 , 3 , 6 , 9 , 18 เป็นตัวประกอบของ 18

จำนวนเฉพาะ หมายถึง จำนวนที่มีตัวประกอบเพียง 2 ตัว คือ 1 กับตัวของมันเอง

การหาตัวประกอบของจำนวนนับใด ๆ จะพบว่า บางจำนวนที่ตัวประกอบเพียง 1 ตัว บางจำนวนมีตัวประกอบ 2 ตัว ในขณะที่บางตัวมีตัวประกอบมากกว่า 2 ตัว

1 มีตัวประกอบ 1 ตัว คือ 1

6 มีตัวประกอบ 4 คือ 1 , 2 , 3 , 6

2 มีตัวประกอบ 2 คือ 1 , 2 หรืออีกนัยหนึ่งว่า 2 มีตัวประกอบ 2 คือ 1 กับ ตัวของมันเอง

3 มีตัวประกอบ 2 คือ 1 , 3 หรืออีกนัยหนึ่งว่า 3 มีตัวประกอบ 2 คือ 1 กับ ตัวของมันเอง

จากตัวอย่างด้านบน เราพบว่า 1 มีตัวประกอบ 1 ตัว 6 มีตัวประกอบ 4 ตัว ในขณะที่ 2 และ 3 มีตัวประกอบ 2 ตัว คือ 1 กับ ตัวของมันเอง เราเรียกจำนวนที่มีตัวประกอบเพียง 2 ตัวนี้ว่า จำนวนเฉพาะ

ตัวประกอบเฉพาะ ตัวประกอบของจำนวนนับใดที่เป็นจำนวนเฉพาะ

การหาตัวประกอบเฉพาะของจำนวนนับใด ๆ นั้น เราจะต้องหาตัวประกอบทั้งหมดของจำนวนนับนั้น ๆก่อน จากนั้นจึงค่อยพิจารณา ตัวประกอบเหล่านั้นว่า มีจำนวนใดเป็นจำนวนเฉพาะบ้าง ซึ่งจำนวนเฉพาะเหล่านั้นเราเรีนกว่า ตัวประกอบเฉพาะ

ตัวอย่าง

ตัวประกอบของ 12 ประกอบ 1 , 2 , 3 , 4 , 6 , 12

ตัวประกอบเฉพาะของ 12 ประกอบด้วย 2 , 3

ทั้งนี้เพราะว่า 2 , 3 เป็นตัวประกอบของ 12 และเป็นจำนวนเฉพาะด้วย

0% Complete